Synthesis of Highly Pure and Hydrophilic Metal-Nitride Thin Films Using Reactive High-Frequency Magnetron Sputtering

Authors

  • Clarisse Jade T. Estrada Mindanao State University
  • Hamdi Muhyuddin D. Barra Mindanao State University
  • Johnny Jim S. Ouano Mindanao State University
  • Sunny John A. Lood Mindanao State University
  • Soo Kien Chen Universiti Putra Malaysia
  • Florencio D. Recoleto, Jr.

DOI:

https://doi.org/10.70954/itmj.v6i1.363

Keywords:

contact angle, metal nitrides, nanotechnology, sputtering, thin film

Abstract

The increasingly widespread innovation of nanotechnology significantly affects our society, especially its contribution to economies. Nanosized metal nitrides possess interesting properties (e.g., highly corrosive resistant, good electrical properties, great metallic conductivity, etc.) that are capitalized, resulting in numerous applications. The thin film preparation procedure is an important step that determines the film's characteristics, such as crystallographic orientation. Hence, this study pursues the synthesis of metal-nitride thin films and characterizes their properties for future possible applications. Vanadium nitride (VN) and aluminum nitride (AlN) were synthesized and deposited on silicon substrates via high-frequency magnetron sputtering. The crystalline structure of the thin films was characterized using X-ray diffraction (XRD), and the wettability was determined using static contact angle measurement. Accordingly, the (311) phase of vanadium nitride and the (100) and (004) phases of aluminum nitride were observed with no impurities. Meanwhile, the static water contact angle indicated a hydrophilic property in both thin-film samples, as the values were observed to be less than 90°.

Author Biographies

Clarisse Jade T. Estrada, Mindanao State University

Optoelectronics Nanoscience Research Laboratory, Department of Physics, Mindanao State University – Main Campus, Marawi City

Hamdi Muhyuddin D. Barra, Mindanao State University

Optoelectronics Nanoscience Research Laboratory, Department of Physics, Mindanao State University – Main Campus, Marawi City

Johnny Jim S. Ouano, Mindanao State University

Optoelectronics Nanoscience Research Laboratory, Department of Physics, Mindanao State University – Main Campus, Marawi City

Sunny John A. Lood, Mindanao State University

Optoelectronics Nanoscience Research Laboratory, Department of Physics, Mindanao State University – Main Campus, Marawi City

Soo Kien Chen, Universiti Putra Malaysia

Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Florencio D. Recoleto, Jr.

Optoelectronics Nanoscience Research Laboratory, Department of Physics, Mindanao State University – Main Campus, Marawi City

References

Achour, A., Lucio, R., Solaymani, S., Islam, M. & Ahmad, I. (2018). Reactive sputtering of vanadium nitride thin films as pseudo-capacitor electrodes for high areal capacitance and cyclic stability. Journal of Materials Science: Materials in Electronics, 0(0), 0. https://doi.org/10.1007/s10854-018-9435-z

Aissani, L., Fellah, M., Chadli, A. H., Samad, M. A., Cheriet, A., Salhi, F., Nouveau, C., Weiß, S. & Obrosov, A. (2021). & C corrosion Investigating the effect of nitrogen on the structural and tribo-mechanical behavior of vanadium nitride thin films deposited using R . F . magnetron sputtering. Journal of Materials Science, 200. https://doi.org/10.1007/s10853-021-06393-0

Chauhan, K. V & Rawal, S. K. (2014). A review paper on tribological and mechanical properties of ternary nitride based coatings. Procedia Technology, 14, 430–437.

Chen, X., Li, C., Grätzel, M., Kostecki, R. & Mao, S. S. (2012). Nanomaterials for renewable energy production and storage. Chemical Society Reviews, 41(23), 7909–7937.

Durai, G., Kuppusami, P., Maiyalagan, T., Theerthagiri, J., Kumar, P. V. & Kim, H. (2019). SC. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.02.170

Epp, J. (2016). X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods (pp. 81–124). Elsevier.

Escobar, C., Caicedo, J. C., Aperador, W., Delgado, A. & Prieto, P. (2013). Improve on corrosion resistant surface for AISI 4140 steel coated with VN and HfN single layer films. International Journal of Electrochemical Science, 8(6), 7591–7607.

Gorodzha, S. N., Surmeneva, M. A., Prymak, O., Wittmar, A., Ulbricht, M., Epple, M., Teresov, A., Koval, N. & Surmenev, R. A. (2015). Correlation between surface properties and wettability of multi-scale structured biocompatible surfaces. IOP Conference Series: Materials Science and Engineering, 98(1), 12026.

Gudmundsson, J. T. (2020). Physics and technology of magnetron sputtering discharges. Plasma Sources Science and Technology, 29(11), 113001.

Gudmundsson, J. T. & Lundin, D. (2020). Introduction to magnetron sputtering. In High power impulse magnetron sputtering (pp. 1–48). Elsevier.

Hajihoseini, H. & Gudmundsson, J. T. (2017). Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering. Journal of Physics D: Applied Physics, 50(50), 505302.

Hones, P., Martin, N., Regula, M. & Lévy, F. (2003). Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films. Journal of Physics D: Applied Physics, 36(8), 1023.

Huang, J.-H., Lin, C.-H. & Yu, G.-P. (2019). Texture evolution of vanadium nitride thin films. Thin Solid Films, 688, 137415.

Hugosson, H. W., Eriksson, O., Jansson, U., Ruban, A. V, Souvatzis, P. & Abrikosov, I. A. (2004). Surface energies and work functions of the transition metal carbides. Surface Science, 557(1–3), 243–254.

Iqbal, A. & Mohd-Yasin, F. (2018). Reactive sputtering of aluminum nitride (002) thin films for piezoelectric applications: A review. Sensors, 18(6), 1797.

Marmur, A., Della Volpe, C., Siboni, S., Amirfazli, A. & Drelich, J. W. (2017). Contact angles and wettability: Towards common and accurate terminology. Surface Innovations, 5(1), 3–8.

Mohimi, E., Zhang, Z. V, Mallek, J. L., Liu, S., Trinh, B. B., Shetty, P. P., Girolami, G. S. & Abelson, J. R. (2019). Low temperature chemical vapor deposition of superconducting vanadium nitride thin films. Journal of Vacuum Science & Technology A, 37(3).

Robert, K., Douard, C., Demortière, A., Blanchard, F., Roussel, P., Brousse, T. & Lethien, C. (2018). On Chip Interdigitated Micro-Supercapacitors Based on Sputtered Bifunctional Vanadium Nitride Thin Films with Finely Tuned Inter- and Intracolumnar Porosities. Advanced Materials Technologies, 3(7), 1–12. https://doi.org/10.1002/admt.201800036

Roduner, E. (2006). Size matters: why nanomaterials are different. Chemical Society Reviews, 35(7), 583–592.

Roduner, E. (2007). Nanoscopic materials: size-dependent phenomena. Royal Society of Chemistry.

Rossnagel, S. M. (2020). Magnetron sputtering. Journal of Vacuum Science & Technology A, 38(6).

Tarala, V., Ambartsumov, M., Altakhov, A., Martens, V. & Shevchenko, M. (2016). Growing c-axis oriented aluminum nitride films by plasma-enhanced atomic layer deposition at low temperatures. Journal of Crystal Growth, 455, 157–160.

Vadiyar, M. M., Bhise, S. C., Patil, S. K., Kolekar, S. S., Shelke, A. R., Deshpande, N. G., Chang, J.-Y., Ghule, K. S. & Ghule, A. V. (2016). Contact angle measurements: a preliminary diagnostic tool for evaluating the performance of ZnFe 2 O 4 nano-flake based supercapacitors. Chemical Communications, 52(12), 2557–2560.

Venkateshalu, S., Cherusseri, J., Karnan, M., Kumar, K. S., Kollu, P., Sathish, M., Thomas, J., Jeong, S. K. & Grace, A. N. (2020). New method for the synthesis of 2D vanadium nitride (MXene) and its application as a supercapacitor electrode. ACS Omega, 5(29), 17983–17992.

Wenzel, R. N. (1949). Surface roughness and contact angle. The Journal of Physical Chemistry, 53(9), 1466–1467.

Downloads

Published

2023-12-01

How to Cite

Estrada, C. J. T. ., Barra, H. M. D. ., Ouano, J. J. S. ., Lood, S. J. A. ., Chen, S. K. ., & Recoleto, Jr., F. D. (2023). Synthesis of Highly Pure and Hydrophilic Metal-Nitride Thin Films Using Reactive High-Frequency Magnetron Sputtering. Innovative Technology and Management Journal, 6(1). https://doi.org/10.70954/itmj.v6i1.363

Most read articles by the same author(s)