Exploring potential phytoremediation in the terrestrial and aquatic mined area in the Philippines: An integrative review
PDF

Keywords

Environmental Chemistry
Environmental Management
Mining Industry
Soil and Water Pollution
Heavy Metals

How to Cite

Sumayao, E., Picardal, J., & Ariaso, D. (2022). Exploring potential phytoremediation in the terrestrial and aquatic mined area in the Philippines: An integrative review. TARAN-AWAN Journal of Educational Research and Technology Management, 3(1), 16-30. Retrieved from https://journal.evsu.edu.ph/index.php/tjertm/article/view/321

Abstract

The mining of heavy metals is one of the activities in the Philippines that provide jobs and income to the country. However, improper disposal of these heavy metals resulted in soil and water pollution. While phytoremediation is a green strategy that uses hyper-accumulator plants and their rhizospheric microorganisms to stabilize, transfer, or degrade soil, water, and environmental pollutants. Thus, this paper focused on exploring potential phytoremediation in the Philippines' heavy metal polluted mined area. An integrative review was employed, and data were grouped based on their similarities and differences, described and thoroughly discussed. Based on the study’s result, several plant species naturally grown in the area accumulated more heavy metals like copper, lead, nickel, mercury, and arsenic. Some plant species act as hyperaccumulators, phytostabilizers, and heavy metal tolerant. Moreover, these phytoremediators stored these heavy metals in their roots, rhizomes, and shoots. It is encouraged that the government includes phytoremediators' use in the rehabilitation of heavy metals polluted mined areas.

PDF

References

Abad, I. M., Capundag , R. O., Gamalo , J. C., Ascano , C., & Lacang , G. C. (2017). Phytoremediation potential of selected grass species in the Mine Tailing Pond of Sitio Manlauyan, Gango, Libona, Bukidnon, Philippines. Journal of Biodiversity and Environmental Sciences, 11(5), 321-328.

Ancheta, M., Quimado , M. O., Tiburan , C. L., Doronila , A., & Fernando , E. S. (2020). Copper and arsenic accumulation of Pityrogramma calomelanos, Nephrolepis biserrata, and Cynodon dactylon in Cu- and Au- mine tailings. Journal of Degraded and Mining Lands Management, 7(3), 2458-2502. https://minerva-access.unimelb.edu.au/bitstream/handle/11343/274419/665-1618-1-PB.pdf?sequence=1&isAllowed=y

Ashraf, M., Ozturk, M., & Ahmad, M. (1-32). Toxins and their phytoremediation Plant adaptation and phytoremediation. Berlin: Springer.

Ashraf, M., Ozturk, M., & Ahmad, M. (2010). Toxins and their phytoremediation: Plant Adaptation and Phytoremediation. Berlin: Springer.

Awa, S., & Hadibarata, T. (2020 ). Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review. Water Air Soil Pollution, 231-247.https://doi.org/10.1007/s11270-020-4426-0

Basic Information about Lead Air Pollution. (2021, August 16). US EPA. https://www.epa.gov/lead-air-pollution/basic-information-about-lead-air-pollution

Berame, J., Mariano, M., Lascano, J., Sariana, L., Macasinag, L., & Alam, Z. (2020). Environmental biomonitoring of terrestrial ecosystems in the Philippines: A critical assessment and evaluation. AMURE International Journal of Ecology and Conservation, 32(1). Retrieved from http://ejournals.ph/form/cite.php?id=15307

Brevidelli, M., & Domenico, E. (2008). Course completion work: Practical Guide for teachers and students in the health area. 2nd ed. . Sao Paulo : Latria .

Chaney, R. L., & Ryan, J. A. (1994). Risk based standards for arsenic, lead and cadmium in urban soils. Summary of information and methods developed to estimate standards for Cd, Pb, and As in urban soils. https://www.osti.gov/etdeweb/biblio/26007

Chinmayee, M. D., Mahesh, B., Pradesh, S., Mini, I., & Swapna, T. (2012). The Assessment of Phytoremediation Potential of Invasive Weed Amaranthus spinosus L. Applied Biochemistry and Biotechnology, 1550-1559. https://doi.org/10.1007/s12010-012-9657-0

Chua, J., Banua , J., Arcilla , I., Orbecido , A., de Castro , M., Ledesma , N., . . . Belo, L. (2019). Phytoremediation potential and copper uptake kinetics of Philippine bamboo species in copper contaminated substrate. Heliyon, 5(9). https://doi.org/10.1016/j.heliyon.2019.e02440

Claveria, R. J., Perez, T. R., Apuan , M. B., Apuan , D. A., & Perez , R. C. (2019 ). Pteris melanocaulon Fee is an As hyperaccumulator. Chemosphere, 236. https://doi.org/10.1016/j.chemosphere.2019.124380

Claveria, R. J., Perez, T. R., Perez, R. C., Algo, J. C., & Robles, P. Q. (2019). The Identification of Indigenous Cu and As metallophytes in the Lepanto Cu-Au Mine, Luzon, Philippines. Environmental Monitoring and Assessment, 191(3), 1-15. https://doi.org/10.1007/s10661-019-7278-6

Claveria, R. J., Perez, T. R., Perez, R. C., Algo, J. C., & Robles, P. Q. (2019). The Identification of Indifenous Cu and As metallophytes in the Lepanto Cu-Au Mine, Luzon, Philippines. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-019-7278-6

Claveria, R. R., De los Santos , C. Y., Teodoro , K. B., Rellosa , M. A., & Valera , N. S. (2010 ). The Identification of Metallophytes in the Fe and Cu Enriched Environments of Brookes Point, Palawan and Mankayan, Benguet and their Implications to Phytoremediation. Science Diliman.

Daverey, S. V. (2020). Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology. https://doi.org/10.1016/j.eti.2020.100774

De la Torre, J. B., Claveria , R. R., Perez , R. C., Perez , T. R., & Doronila , A. I. (2016). Copper uptake by Pteris melanocaulon Fee from a Copper-Gold mine in Surigao del Norte, Philippines. International Journal of Phytoremediation, 18(5), 435-441. https://doi.org/10.1080/15226514.2015.1109603

delos Angeles, M., & Cuevas, V. C. (2019). Phytoremediation potential of Paspalum conjugation Berg. and the role of compost amendment in rehabilitation of soil materials from high copper-containing mine tailings ponds. Philippine Agriculture Scientist, 101(2), 206-215. https://agris.fao.org/agris-search/search.do?recordID=PH2018000801

Demetillo, M. T., & Goloran, A. B. (2017). Determination of mercury accumulation of Pistia stratiotes lam in lower Agusan River, Butuan City, Philippines. Journal of Biodiversity and Environmental Sciences, 11(4), 48-53.

D'Itri, F. M. (1972). Environmental Mercury Problem.

Ejdemo, T., & Soderholm, P. (2011). Mining investment and regional development: A scenario-based assessment for Northern Sweden. Resource Policy, 14-21 .https://doi.org/10.1016/j.resourpol.2010.08.008

Fernando, E. S., Quimado , M. O., & Doronila , A. I. (2014 ). Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines. PhytoKeys, 1-13. 10.3897/phytokeys.37.7136

Fong-Sam, Y. (2005). The Mineral Industry of the Philippines. . Minerals Yearbook.

Gabriel, A. V., & Salmo, S. G. (2014). Assessment of Trace Metal Bioaccumulation by Avicennia marina (Forsk.) in the Last Remaining Mangrove Stands in Manila Bay, the Philippines. Bulletin of Environmental Contamination and Toxicology, 722-727. https://doi.org/10.1007/s00128-014-1415-2

Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: human health and environmental toxicology. International Journal of Environmental Research and Public Health, 17(3), 679. https://doi.org/10.3390/ijerph17030679

Jabbarov, N. (2021). Assessment of the Effect of Mining and Mining Industry on Soil Covering. Bulletin of Science and Practice, 24-30.

Kasprzak, K. S., Sunderman , F., & Salnikow , K. (2003). Nickel carcinogenesis. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 533(1-2), 67-97. https://doi.org/10.1016/j.mrfmmm.2003.08.021

Liu, S., Liang, Y., Xiao, Xiao, Y., & Fang, J. (2020). Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. . Environmental Science Pollution Research, 16069-16085. https://doi.org/10.1007/s11356-020-08282-6

Lo Biondo-Wood, G., & Haber, J. (2001). Nursing research: Methods, Critical Assessment and Utilization. 4th ed. Rio de Janeiro: Guanabara Koogan.

Merkl, N., Schultze-Kraft , R., & Infante , C. (2005). Phytoremediation in the tropics-influence of heavy crude oil on root morphological characteristics of graminoids. Environmental Pollution, 138(1), 86-91. https://doi.org/10.1016/j.envpol.2005.02.023

Napaldet, J. T., & Buot, I. E. (2020). Absorption of Lead and Mercury in Dominant Aquatic Macrophytes of Balili River and Its Implication to Phytoremediation of Water Bodies. Tropical Life Sciences Research, 31(2), 19-32. 10.21315/tlsr2020.31.2.2

Nedjimi, B. (2009 ). Calcium can protect Atriplex halimus subsp.schweinfurthii from cadmium toxicity. Acta Botany Gallica, 391 -397.https://doi.org/10.1016/j.desal.2009.01.019

Nedjimi, B. (2020). Germination characteristics of Peganum harmala L. (Nitrariaceae) subjected to heavy metals: Implications for the use in polluted dryland restoration. International Journal of Environment Science and Technology, 2113-2122. https://doi.org/10.1007/s13762-019-02600-3

Nedjimi, B. (2020). Germination characteristics of Peganum harmala L. (Nitrariaceae) subjected to heavy metals: Implications for the Use in Polluted dryland restoration. International Journal Environment Science Technology, 2113-2122.

Nriagu, J. (1994). Arsenic in the environment: Part 1 cycling and characterization. New York, USA: Wiley.

Paz-Alberto, A. M., Vizmonte , L. D., & Sigua , G. C. (2015). Assessing Diversity and Phytoremediation Potential of Mangrove for Copper Contaminated Sediments in Subic Bay, Philippines. International Journal of Plant, Animal and Environmental Sciences, 5(4). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1082.7647&rep=rep1&type=pdf

Pleto, J. V., Simbahan , J. F., Arboleda , M. M., & Migo , V. P. (2019 ). Phytoremediation Potential of Vetiver Grass (Chrysopogon sp.) System for Improving the Water Quality of Aquaculture Ponds along the Marilao and Meycauayan River in Bulacan, Philippines. Journal of Environmental Science and Management, 19-26. https://ovcre.uplb.edu.ph/journals-uplb/index.php/JESAM/article/view/343

Polit, D., Beck , C., & Hungler , B. (2004 ). Fundamentals of nursing research: Methods, Evaluation and Use. 5th ed. Porto Alegre: Artmed.

Quimado, M. O., Fernando , E. S., Trinidad , L. C., & Doronila , A. (2014 ). Nickel-hyperaccumulating species of Phyllanthus (Phyllanthaceae) from the Philippines. Australian Journal of Botany, 103-110. https://doi.org/10.1071/BT14284

San Cristobal, J., & Biezma , M. (2006 ). The mining industry in the European Union: Analysis of inter-industry linkages using input-output analysis. Resources Policy, 1-6 .https://dopi.org/10.1016/j.resourpol.2006.03.004

Stilwell, L., Minnitt , R., Monson , T., & Kuhn , G. (2000 ). An input-output analysis of the impact of mining on the South African economy. Resources Policy, 17-30. https://doi.org/10.1016/S0301-4207(00)00013-1

Tabatabaei, J., & Mohammadi, F. (2013). Environmental Effects of Mining Industries in Meymeh Region, North West of Isfahan. APCBEE Procedia, 388-393.

Toledo-Bruno, A. G., Aribal , L. G., Lustria , M. M., & Marin , R. A. (2016). Phytoremediation potential of mangrove species at Pangasihan Mangrove forest reserve in Mindanao, Philippines. Journal of Biodiversity and Environmental Sciences, 9(1), 142-149.

Ubuza, L. J., Padero , P. S., Nacalaban , C. N., Tolentino , J. T., Alcoran , D. C., Tolentino , J. C., . . . Arazo , R. O. (2020). Assessment of the potential of duckweed (Lemna minor L.) in treating lead-contaminated water through phytoremediation in stationary and recirculated set-ups. Environmental Engineering Research, 25(6), 977-982. https://pdfs.semanticscholar.org/4635/f0c3a50c6fc6e97a2e5b68c62a2fca5a3cd6.pdf

Varela, R. P., Garcia, G. A., Garcia, C. M., & Asube, L. S. (2019). Ecobelt Construction adopting agroforestry for rehabilitation of mined-out nickel areas in Surigao, Philippines. Advances in Environmental Sciences, 11(3), 187-194. https://www.proquest.com/openview/f334993dfd7d9548d604c3adb88d1a6a/1?pq-origsite=gscholar&cbl=2046426

Win, Z. C., Diaz, L. L., Perez, T. R., & Nakasaki , K. (2020). Phytoremediation of Heavy metal Contaminated Wastes from Small-scale Gold Mining Using Pityrogramma calomelanos. In E3S Web of Conference, 148, 05007. https://doi.org/10.1051/e3sconf/202014805007

Win, Z. C., Diaz, L. L., Perez, T. R., & Nakasaki, K. (2020). Phytoremediation of Heavy Metal Contaminated Wastes from Small-scale Gold Mining Using Pityrogramma calomelanos. E3S Web of Conference. https://doi.org/10.1051/e3sconf/202014805007

Wirkus, W. (1974). History of the Mining Industry in the Philippines: 1898-1941. Cornell University.

Yan, A., Wang, Y., Tan, S., Mohd Yusof, M., Ghosh S., & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11. Retrieved from https://www.frontiersin.org/article/10.3389/fpls.2020.00359. 10.3389/fpls.2020.00359

Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 145-156. https://www.scielo.br/j/bjpp/a/F43kT7jYFPygVtd86sLGBYx/abstract/?lang=en

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 TARAN-AWAN Journal of Educational Research and Technology Management