Reflectance Properties of Silver Thin Film Synthesized via RF Magnetron Sputtering

Authors

DOI:

https://doi.org/10.70954/85ne3f44

Keywords:

colorimeter application, heating chamber, Maillard browning reaction, peanut roaster, roasting chamber

Abstract

Nano film materials have now become one of the most interesting areas for research explorations and technological applications due to its unique properties that varied significantly when deposited in different conditions. One of the leading materials with very interesting use in photovoltaic devices, electrochemical applications, optical coatings, and medical applications is silver (Ag). Thus, this study is carried out to investigate the reflectance property of silver nano film. The films are synthesized in a silicon (Si) wafer substrate using radio frequency magnetron sputtering device deposited under 300 °C and 500 °C substrate temperature. The X-ray diffraction (XRD) result revealed the existence of silver crystals in all samples. UV-vis spectrophotometer was used to analyze the optical properties of the silver nano film sample. Correspondingly, the grown silver nano film at 500 °C has a solar reflectance (Rsol) of 65.16%, which indicates the sample’s remarkable ability to reflect solar energy.  Additionally, the sample’s reflectance in the ultraviolet (RUV), visible (Rlum), and infrared (RIR) spectra are 61.35%, 75.53%, and 49.48 %, respectively. These results indicate that the prepared sample has better reflectance properties compared to the Ag film synthesized 300 °C substrate temperature.

Author Biographies

  • Sunny John A. Lood, Mindanao State University

    Optoelectronics Nanoscience Research Laboratory, Department of Physics, Mindanao State University - Main Campus, Marawi City 9700

  • Hamdi Muhyuddin D. Barra, Mindanao State University

    Optoelectronics Nanoscience Research Laboratory, Department of Physics, Mindanao State University - Main Campus, Marawi City 9700

  • Clarisse Jade T. Estrada, Mindanao State University

    Optoelectronics Nanoscience Research Laboratory, Department of Physics, Mindanao State University - Main Campus, Marawi City 9700

  • Soo Kien Chen, Universiti Putra Malaysia

    Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

  • Johnny Jim S. Ouano, Mindanao State University

    Optoelectronics Nanoscience Research Laboratory, Department of Physics, Mindanao State University - Main Campus, Marawi City 9700

  • Florencio D. Jr Recoleto , Mindanao State University

    Optoelectronics Nanoscience Research Laboratory, Department of Physics, Mindanao State University - Main Campus, Marawi City 9700

References

Adewuyi, A., & Lau, W. J. (2020). Nanomaterial development and its applications for emerging pollutant removal in water. Handbook of Nanotechnology Applications: Environment, Energy, Agriculture and Medicine, 1(2021), 67–97. https://doi.org/10.1016/B978-0-12-821506-7.00003-X

Angus Macleod, H. (2013). Recent developments in deposition techniques for optical thin films and coatings. Optical Thin Films and Coatings: From Materials to Applications, 3–25. https://doi.org/10.1533/9780857097316.1.3

Avrutin, B. V., Silversmith, D. J., Mori, Y., Kawamura, F., Kitaoka, Y., & Morkoc, H. (2010). Growth of Bulk GaN and AlN : Progress and Challenges. 98(7).

Barra, H. M., Chen, S. K., Tamchek, N., & Talib, Z. A. (2018). 2018-ITMJ-Facile-preparation-of-VO2-PVP-nanocomposite-coating-for-smart-window-application-with-improved-visible-transmittance.pdf (pp. 63–68). Innovative Technology and Management Journal.

Barra, H. M., Chen, S. K., Tamchek, N., Talib, Z. A., Lee, O. J., & Tan, K. B. (2022). Synthesis and Characterization of Nanothermochromic VO2 Composite Film for Smart Window Application.pdf (pp. 68–72). Universiti Putra Malaysia. www.science.upm.edu.my/ebook-iFSC2021

Bonilla-Gameros, L., Chevallier, P., Sarkissian, A., & Mantovani, D. (2020). Silver-based antibacterial strategies for healthcare-associated infections: Processes, challenges, and regulations. An integrated review. Nanomedicine: Nanotechnology, Biology, and Medicine, 24, 102142. https://doi.org/10.1016/j.nano.2019.102142

Bosetti, M., Massè, A., Tobin, E., & Cannas, M. (2002). Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials, 23(3), 887–892. https://doi.org/10.1016/S0142-9612(01)00198-3

Chaloupka, K., Malam, Y., & Seifalian, A. M. (2010). Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28(11), 580–588. https://doi.org/10.1016/j.tibtech.2010.07.006

Dai, L., Chen, S., Liu, J., Gao, Y., Zhou, J., Chen, Z., Cao, C., Luo, H., & Kanehira, M. (2013). F-doped VO 2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability †. 11723–11729. https://doi.org/10.1039/c3cp51359a

De Faria, A. F., Martinez, D. S. T., Meira, S. M. M., de Moraes, A. C. M., Brandelli, A., Filho, A. G. S., & Alves, O. L. (2014). Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids and Surfaces B: Biointerfaces, 113, 115–124. https://doi.org/10.1016/j.colsurfb.2013.08.006

De Souza E Silva, J. M., Pastorello, M., Kobarg, J., Cardoso, M. B., & Mazali, I. O. (2013). Selective synthesis of silver nanoparticles onto potassium hexaniobate: Structural organisation with bactericidal properties. ChemPhysChem, 14(18), 4075

Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24. https://doi.org/10.1016/j.jcis.2011.07.017

Haji Abdolvahab, R., & Zamani Meymian, M. R. (2018). Theoretical and experimental analyses of the deposited silver thin films. Surface and Interface Analysis, 50(4), 403–410. https://doi.org/10.1002/sia.6381

Ivanova, A. A., Surmenev, R. A., Surmeneva, M. A., Mukhametkaliyev, T., Loza, K., Prymak, O., & Epple, M. (2015). Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles. Applied Surface Science, 329, 212–218. https://doi.org/10.1016/j.apsusc.2014.12.153

Jilani, A., Abdel-wahab, M. S., & Hammad, A. H. (2017). Advance Deposition Techniques for Thin Film and Coating. Modern Technologies for Creating the Thin-Film Systems and Coatings. https://doi.org/10.5772/65702

Kim, W. M., Ku, D. Y., Lee, K. S., & Cheong, B. (2010). Effect of oxygen content and deposition temperature on the characteristics of thin silver films deposited by magnetron sputtering. Applied Surface Science, 257(4), 1331–1336. https://doi.org/10.1016/j.apsusc.2010.08.061

Li, N., Chen, N., Bai, Y., & He, H. (2012). Preparation and properties of polycrystalline silicon seed layers on graphite substrate. Journal of Semiconductors, 33(11). https://doi.org/10.1088/1674-4926/33/11/113003

Liu, L., Han, A., Ye, M., & Feng, W. (2015). The evaluation of thermal performance of cool coatings colored with high near-infrared reflective nano-brown inorganic pigments: Magnesium doped ZnFe2O4 compounds. Solar Energy, 113, 48–56. https://doi.org/10.1016/j.solener.2014.12.034

Marambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531–1551. https://doi.org/10.1007/s11051-010-9900-y

Mohan Bhagyaraj, S., Oluwafemi, O. S., & Oluwafemi, O. S. (2018). Nanotechnology: The Science of the Invisible. In Synthesis of Inorganic Nanomaterials: Advances and Key Technologies. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101975-7.00001-4

Mohebbi, M., Fedosejevs, R., Gopal, V., & Harrington, J. A. (2002). Silver Coated Hollow-glass Waveguide for Applications At 800 Nm. Appl. Opt., 41(33), 7031–7035.

Moriomoto, T., Oka, R., Minagawa, K., & Masui, T. (2022). Novel near-infrared reflective black inorganic pigment based on cerium vanadate. RSC Advances, 12(26), 16570–16575. https://doi.org/10.1039/d2ra02483g

Musil, J., & Vlček, J. (1999). A perspective of magnetron sputtering in surface engineering. Surface and Coatings Technology, 112(1–3), 162–169. https://doi.org/10.1016/S0257-8972(98)00748-8

Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712–1720. https://doi.org/10.1128/AEM.02218-06

Schneid, A. C., Pereira, M. B., Horowitz, F., Mauler, R. S., Matte, C. R., Klein, M. P., Plinho, F. H., Costa, T. M. H., De Menezes, E. W. D., & Benvenutti, E. V. (2015). Silver nanoparticle thin films deposited on glass surface using an ionic silsesquioxane as stabilizer and as crosslinking agent. Journal of the Brazilian Chemical Society, 26(5), 1004–1012. https://doi.org/10.5935/0103-5053.20150066

Smith, A. M., & Nie, S. (2010). Semiconductor nanocrystals: Structure, properties, and band gap engineering. Accounts of Chemical Research, 43(2), 190–200. https://doi.org/10.1021/ar9001069

Smith, D. R., & Fickett, F. R. (1995). Low-Temperature Properties of Silver. 100(2).

Suzuki, T., Abe, Y., Kawamura, M., Sasaki, K., Shouzu, T., & Kawamata, K. (2002). Optical and electrical properties of pure Ag and Ag-based alloy thin films prepared by RF magnetron sputtering. Vacuum, 66(3–4), 501–504. https://doi.org/10.1016/S0042-207X(02)00122-7

Xu, L., Wang, Y., Huang, J., Chen, C., Wang, Z., & Xie, H. (2020). Theranostics Silver nanoparticles : Synthesis , medical applications and biosafety. 10(20). https://doi.org/10.7150/thno.45413

Published

2025-02-26

How to Cite

Reflectance Properties of Silver Thin Film Synthesized via RF Magnetron Sputtering. (2025). Innovative Technology and Management Journal, 6(1). https://doi.org/10.70954/85ne3f44

Most read articles by the same author(s)