The Simulation of Water Level Using Delft3D Hydrodynamic Model to analyze the case of coastal Inundation in Pontianak
DOI:
https://doi.org/10.70954/itmj.v4i1.266Keywords:
Sea Level, Tidal Flooding, Delft-3D, FNL, Correlation, PontianakAbstract
Several Indonesian coastal areas are prone to tidal flooding, one of which is Pontianak. High tides can trigger floods due to astronomical and meteorological factors. This study discusses the Delft3D hydrodynamics model’s performance in alluding to sea level and wave height in 4 cases of tidal flood events. Final Data (FNL) Global Operational Analysis from NOAA and tidal component data from oceananomatics are used to the Delft3D model. The model output consists of sea level is verified using tide gauge observation data from BIG. This is then used to analyze sea level to 4 flood events with the accumulated rainfall data from GSMaP, wind, pressure from ECMWF, and rainfall observations to describe the hydro-meteorological conditions. Based on four sea-level simulation cases, the Delft3D hydrodynamic model can perfectly reproduce the sea-level rise pattern. This can be seen from the correlation value of 0.93 - 0.96. Even though the simulated seawater level's value has a high error, it was significantly resolved after the datum correction (with a decrease in error of ±7-11 cm). Generally, the most dominant hydro-meteorological conditions affecting the level of flood events are waves and the direction (45°-90° towards the Pontianak Coast) and speed (4-16 knots) of the wind.
In some cases, heavy rain can exacerbate tidal flooding conditions if it coincides with high sea-level conditions. It can obstruct the river's flow into the sea and cause water to overflow on land. This research can be used to consider making early warnings of tidal flooding in coastal areas, especially Pontianak. In addition, it is better to use forecast data (GFS) to make predictions and early warnings of tidal flooding.
References
Deltares. (2021a). User Manual Delft3D-FLOW: Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. Netherlands: Delft.
Deltares. (2021b). User Manual Delft3D-WAVE: Simulation of short-crested waves with SWAN. Netherlands: Delft.
Dewi, R.C., Hakim, O.S., & Siadari, E.L. (2018). Pemodelan Mike21 Dalam Kejadian Banjir Rob Menjelang Gerhana Bulan Di Pesisir Semarang. Journal of Meteorology, Climatology and Geophysics, 3(2), 46-45.
Habibie, M.N., Hartoko, A., & Ningsih, N.S. (2012). Simulasi Rob di Semarang Menggunakan Model Hidrodinamika 2D. Puslitbang Journal. 13. 103-104.
Hidayat, A. (2012). Analisis Pengembangan Kawasan Pesisir Berbasis Mitigasi Sea Level Rise (Kenaikan Muka Air Laut) Studi Kasus Kawasan Kota Lama Makassar. Journal of Lingkungan Binaan Indonesia, 1(1), 87-100.
International Panel for Climate Change (IPCC). (2013). Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press.
Kurniawan, R., Habibie, M.N., and Suratno. (2011). Variasi Bulanan Gelombang Laut di Indonesia. Journal of Meteorology and Geophysics, 12(3), 221-232.
Kusumawardhani, A.D. (2012). Pemanfaatan Model Hidrodinamika Untuk Estimasi Genangan Rob di Teluk Jakarta. thesis. Faculty of Mathematics and Science. University of Indonesia. Indonesia.
Lindawati, Jumarang, I.M & Kushadiwijayanto, A. A. (2018). Karakteristik Perambatan Gelombang Pasang Surut di Estuari Kapuas Kecil. Journal of Laut Khatulistiwa, 1(3), 61-66.
Marfai, M.A. (2004). Tidal Flood Hazards Assessment: Modelling in Raster GIS, Case in Western Part of Semarang Coastal Area. Indonesian Journal of Geography, 36, 25-38.
Neolaka, A. (2016). Metode Penelitian dan Statistik (2nd ed.). Bandung: PT Remaja Rosdakarya Offset.
NOAA. (2019). Sea Level Rise Viewer. Access on Juny, 27th 2019, from https://coast.noaa.gov/slr/#/layer/fld/0/17487917.996144205/2339284.155402328/6/satellite/none/0.8/2050/interHigh/midAccretion.
Oktaviani, N.A., Jumarang, M.I., dan Ihwan, A. (2014). Kajian Elevasi Muka Air Laut di Perairan Indonesia Pada Kondisi El Nino dan La Nina. Journal of Prisma Fisika, 2(1), 6-10.
Rachman, R.K., Ismunarti, D.H., & Handoyo, G. (2015). Pengaruh Pasang Surut Terhadap Sebaran Genangan Banjir Rob di Kecamatan Semarang Utara. Journal of Oceanography, 4(1). 1-9.
Rachmawati, F. (2017). Kajian Tinggi Muka Air Lut di Semarang (Studi Kasus Banjir Rob Bulan Juni 2016). Essay. Meteorological study program, College of Meteorology, Climatology, and Geophysics. South Tangerang, Indonesia.
Rivki. (2017, 12 November). Runway Bandara Supadio Pontianak Banjir 12 Penerbangan dibatalkan. DetikNews.
Sanjaka, P.A., Widada, S., & Prasetyawan, I.B. (2013). Pemodelan Inundasi (Banjir Rob) di Pesisir Kota Semarang dengan Menggunakan Model Hidrodinamika. Journal of Oceanography, 2(3), 353-360.
Takagi, H., Tsurudome, C., Thao, N.D., Anh, L.T., Ty, T.V., & Tri, v.p.d. (2016). Ocean tide modelling for urban flood risk assessment in the Mekong Delta. Japan Society of Hydrology and Water Resources, 10, 21-26.
Utami, T.W. & Nur, I.M. (2015). Pemodelan Pasang Surut Air Laut di Kota Semarang dengan Pendekatan Regresi Nonparametrik Polinomial Lokal Kernel. Paper presented at National Seminar on Mathematics Education at Diponegoro University 2015 (SNMPM 2015). Semarang.
Wolf, J. (2008). Coupled Wave and Surge Modelling And Implications For Coastal Flooding. Advances in Geoscience, 17, 19-22.
Downloads
Published
How to Cite
Issue
Section
License
The copyright holder is the Innovative Technology and Management Journal, Eastern Visayas State University, Tacloban City, Philippines.